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In many crystals the asymmetric unit is composed largely of repeating structural fragments all having 
the same orientation. This situation occurs in crystals of organic compounds containing fused benzene 
ring systems, for example. In the direct determination of such crystal structures approximate values for 
the phase-angle sums of certain triplets of strong reflections whose indices sum to zero can be predicted 
from the Fourier transform of a single fragment in its proper orientation. We describe a method for 
determining this orientation by fitting the square of the transform of the fragment to the intensity data 
and indicate how information derived from the oriented transform may be applied to the direct solution 
of crystal structures. An application of the method to the determination of the crystal structure of the 
plant pigment methoxydalrubone (C20H2005; PT, Z--2) is given. 

I. Introduction 

To a good approximation, direct methods of crystal 
structure analysis may be viewed as an exercise in the 
repeated application of the formula 

(p(h) - ~ (cp(k) + tp(h- k))k, (1) 

(Karle & Karle, 1966), where the subscript r refers 
to the restriction of the scheme to those Bragg re- 
flections with the largest values of [¢(k)l, the quasi- 
normalized structure factor magnitude (Karle & 
Hauptman, 1959). 

Since equation (1) derives unknown phase angles 
only from other phase angles whose values are known, 
structure solution usually begins from a small set of 
reflections whose phases may be arbitrarily assigned 
or given symbolic values (Karle & Karle, 1966). In 
the early stages of this 'bootstrap'  procedure the num- 
ber of vectors k, over which the average is taken is 
sharply limited and may, in fact, be one. In this case, 
equation (1) reduces to 

or, since 

~(h) ~_ ~(k) + ~ ( h -  k) (2) 

e(h)= -e(-h)  
~(-  h) + ~(k) + cp(h- k )"  0. (3) 

The chances of equation (3) being a good approxi- 
mation are greatest for those triples with large 
Ig ( -h ) ,~ (k)¢(h-k) l ,  but there will always be some 
triples which grossly violate equation (3) or combine 
to violate equation (1) (Fisher, Hancock & Hauptman, 
1970a). The cosine invariant cos [~ ( -  h) + o(k) + ~;(h- 
k)] ranges from + 1, if equation (3) holds exactly, 
through smaller values to - 1  if it does not. Several 
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statistical methods of obtaining estimates of this 
quantity from the entire set of normalized structure 
factor magnitudes have been suggested (Hauptman, 
1970; Karle, 1970a; Hauptman, 1972). 

In this paper we will show that aberrant triples 
(those whose phase-angle sums are near z0 which are 
not correctly predicted by statistical methods can be 
identified for crystals whose molecules are dominated 
by repeating structural units, such as condensed sys- 
tems of benzene or trans-fused cyclohexane rings. We 
will describe a method for verifying the presence of 
such repeating units, and finally we will make some 
recommendations as to how this information can be 
used in developing the corrcct set of phases from the 
observed intensities. 

II. A review of some properties of Fourier transforms 

Let us approximate a single benzene ring by an array 
of six point scatterers at the corners of a regular 
hexagon. The Fourier transform of this array consists 
of columns of intensity normal to the plane of the ring. 
If the origin is taken at the center of the hexagon, the 
transform will be everywhere real and can be calculated 
according to the formula 

NI2 

T(h)= 2 ~ cos [2n(h. xj)], (4) 
j = l  

where xj is the position vector of one of a centrosym- 
metrically related pair of atoms. The components of 
the vector h are not necessarily integral. A section of 
the transform parallel to the plane of the molecule is 
displayed in Fig. 1. In a triclinic crystal containing 
one of these hexagonal molecules per unit cell, the 
effect of the three-dimensional translational symmetry 
is to sample the transform at the reciprocal-lattice 
points (Lipson & Taylor, 1958). Thus the value of the 
transform at the end of the reciprocal-lattice vector h, 
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scaled by the factor N -~/2, is the quasi-normalized 
structure factor g(h). 

If  the molecule is translated relative to the origin by a 
vector t, the phase angle is modified but the magnitude 
of the t ransform at any point  h remains unchanged:  

T'(h) = T(h) exp ( - 2 n i h .  t ) .  (5) 

Consider now a structure which replaces the original 
s ix-membered ring by two such rings, one displaced 
from the original position by a vector t and the other 
by a vector - t .  Since the t ransform of the sum is the 
sum of the transforms, the t ransform of the resulting 
structure will be 

T'(h) =[T(h) exp ( - 2 n i h .  t ) +  T(h) exp (2nih.  t)] 

= 2T(h) cos (2nh.  t ) .  (6) 

That  is, the t ransform of the two molecules is the 
same as that of  one molecule but rescaled and mul- 
tiplied by a cosine function whose value depends only 
on the component  of  h in the t direction. The transform 
of  the naphthalene molecule shown in Fig. 2 illus- 
trates this result because the naphthalene molecule 
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Fig. 1. A planar hexagonal array of point scatterers represent- 
ing the carbon atoms of a benzene molecule and a parallel 
section through its Fourier transform. The contours of the 
transform are drawn at equal intervals with the zero level 
dotted and the negative levels dashed. The origin is at the 
central peak. 

Fig. 2. A planar ten-atom array of point scatterers approximat- 
ing the carbon atoms of a naphthalene molecule and a 
parallel section through its Fourier transform. The con- 
tours of the transform are drawn at equal intervals with the 
zero level dotted and the negative levels dashed. The origin 
is at the central peak. 

approximates  two benzene rings translated in equal and 
opposite directions. It has columns of large magnitude 
in the same positions as the benzene transform, but 
some of the signs have been changed by the cosine 
function. This characteristic benzenoid transform was 
first discussed by Knot t  (1940) in a pioneering paper. 
Studies in which rather complex benzenoid structures 
were solved by recognizing this pattern have been 
reported (Stadler, Bolton & Mait land,  1963; Mackay,  
1962, and references therein), and a review article is 
available (Chaudhuri ,  1972). 

lII. Phase relationships in structures 
with parallel repeating units 

Let us now turn our attention to phase relationships 
among strong reflections in benzenoid systems. We 
have seen that  the strongest Bragg reflections for our 
hypothetical  triclinic crystal containing one hexagonal 
molecule per unit cell will fall on or near the centers of  
the high-intensity columns of Fig. 1. These columns 
are of  two types: the principal columns have central 
lines of maximal  intensity equal to that at the origin 

A C 3 0 A  - 9 *  
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and are of positive sign, while the secondary columns 
are negative in sign and have peak magnitudes which 
are half those of the primary columns. The columns 
are schematically represented by the plus and minus 
signs (to indicate phase angles of 0 and z~ radians 
respectively) in Fig. 3 along with some possible vector 
triples which add to zero and thus satisfy the condition 
imposed on the three reflections in equation (3). Note 
that some triples have positive sign products in ac- 
cordance with equation (3); others have negative sign 
products corresponding to the replacement of the 0 
in equation (3) by zc.* Each of the arrangements shown 
in Fig. 3 is representative of a family of triples lying 
in various planes passing through the origin. Another 
member of the family of triples represented in Fig. 
3(c) is shown in Fig. 4. Note that each member of the 
families represented by 3(a) and 3(b) is normal; each 
member of 3(c) and 3(d)is aberrant. 

Now consider any two benzene rings related by an 
inversion center at the origin. Since the rings are 
themselves centrosymmetric, they are related by equal 
and opposite translations from the origin and equation 
(6) will hold. The product of three quasi-normalized 
structure factors whose reciprocal vectors (indices) sum 
to zero is related to the product of three values of the 
transform of the single-ring structure by 

~ ( -  h)oa(k)~O~- k) = N -  3/Z T '  ( - h) T '  (k) T '  ( h -  k ) 

= 8 N - a / z T ( - - h ) T ( k ) T ( h - - k )  . m (7) 

where 

m=cos  [2rc(-h.  t)] cos [2nk. t] cos [2n (h -k ) .  t] .  (8) 

Evaluation of the product m for all possible values of 
the arguments reveals that - 1/8 < m < 1, so that if 
Im[> 1/8 then m>0.  Therefore if the magnitude of 
the triple product for the two-ring structure is large, 
it is expected to have the same sign as that for a single 
ring. 

Returning now to the transforms displayed in Figs. 
1 and 2, readers may satisfy themselves that although 
the phases of individual columns for naphthalene have 
been modified by the cosine modulating function, the 
sign products indicated for benzene in Figs. 3 and 4 are 
unchanged for napthalene. 

The transform of two naphthalene molecules related 
by vectors t and - t  is shown in Fig. 5. The vector t 
is arbitrarily chosen except that it lies in the plane 
of the ring for convenience in displaying the transform. 
Again the characteristic pattern of the benzenoid 
transform appears and is modulated by the cosine 
function with nodal planes perpendicular to the vector 
t. The three vectors - h ,  k, and h - k  which are il- 
lustrated in Fig. 5 represent a triple which is aberrant 
for this structure and which would also have been 
aberrant for the single benzene ring [Fig. 3(c)]. 

* The existence of negative sign products among reflec- 
tions having ,~2.1 A, spacings and ,,,120 ° angles with one 
another was first pointed out to us by J. R. Einstein. 

Our conclusion, then, is as follows. To the extent 
that any crystal structure is dominated by a system of 
similarly oriented benzene rings occupying the same 
or parallel planes, its phase relationships with large 
values of I ¢ ( - h ) d ( k ) ¢ ( h - k ) l  will be normal or aber- 
rant depending on whether the corresponding relation- 
ships in the correctly oriented benzene transform are 
normal or aberrant. Further, although we have used 
the benzene ring as our example, the same reasoning 
can be applied to any repeating unit which is itself 
centrosymmetric, such as the chair form ofcyclohexane. 

IV. Determining the orientation of the repeating unit 

In order to utilize the foregoing generalization in the 
solution of a given crystal structure, it is necessary to 

+ 

(a) 

+ -4- 

+ + 

(b) 

-t- + 

:-y_ 
-4- + 

D 

-4- -4- 

+ + 

(c) (d) 

Fig. 3. Some phase relationships among triples of vectors 
which sum to zero and which end in high-intensity regions 
in the basal plane of the benzene transform. Relationships 
(a) and (b) are normal: relationships (c) and (d) are aberrant. 

Fig. 4. A triple of vectors which sum to zero and which end 
in high-intensity columns of the benzene transform. The 
plane of these vectors passes through the origin but is not 
parallel to the plane of the ring. 
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Fig. 5. A planar 20-atom array representing two naphthalene 
molecules translated from the origin by vectors t and - t  
and a section through its Fourier transform• A triple of 
vectors whose sum is zero is superimposed on the transform• 
This relationship is aberrant and would also have been 
aberrant for a single benzene ring. [See Fig. 3(c)]. 
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Fig. 6. A printer plot produced by program O R T R A N  of the 
Bragg reflections from methoxydalrubone having IEI >--1•5• 
The view is along the columns of the transform• 

recognize whether structural regularity is present and, 
if so, to discover the orientation of the regularly re- 
peating unit. Intensity statistics provide a convenient 
early warning of the presence of structural regularity; 
for example, centrosymmetric molecules or fragments 
arranged centrosymmetrically will give rise to the 
'hypercentric' distribution described by Lipson & 
Woolfson (1952). More generally, any parallelism will 
cause the statistics of the set of normalized structure 
factor magnitudes to be affected in a known way 
(Rogers & Wilson, 1953)• 

If the entire molecular structure or a large fraction 
thereof is known with certainty, Patterson search 
techniques (Nordman, 1970) may be used to establish 
not only the orientation of the molecule in the unit 
cell but also its location with respect to the symmetry 
elements• More diffuse structural knowledge, for ex- 
ample, the suspicion that benzene rings are present, 
is best utilized by a direct search of the I¢l-weighted 
reciprocal lattice for the Fourier transform of the 
suspected fragment• We will now describe a computer 
program which we have prepared to carry out this 
search. 

This program accepts as input the indices and nor- 
malized structure-factor magnitudes of those reflections 
with the largest ]d~l values, the lattice parameters, and 
the Cartesian coordinates of the atoms of the suspected 
fragment in some standard orientation• The program 
performs an orientational search using Lattman's 
(1972) rotation angles in the way described by Williams 
(1973). The limits of the search are established ac- 
cording to the symmetry of the fragment and of the 
crystal using the methods of Hirshfeld (1968)• For 
each orientation of the fragment a figure of merit 

S= ~ IE(h31ZlT(h3J z (9) 
i 

is computed (Lattman & Love, 1970) where the sum- 
mation is over the reflections included and 

T(h,) = ~ exp (2rcihi. xj). (10) 
J 

Here xj is the position of an atom of the fragment 
after rotation• A specified number of the orientations 
having the highest figures of merit are subjected to a 
finer rotational scan and finally refined to maximize 
S by adjusting the three orientation angles and a single 
scale factor that is applied to the atomic coordinates 
of the fragment• The program then produces a printer 
plot of the locations of the strong reflections in recip- 
rocal space viewed along a specified axis of the orien- 
ted fragment. Fig. 6 displays such a plot in which the 
typical pattern of the benzene transform is clearly 
visible• 

Finally, the program produces an output on 
punched cards or auxiliary storage for use in phase deter- 
mination• This consists of the Miller indices h and 
I~(h)l along with the corresponding transform value 
T(h). The latter is a signed real number if the fragment 
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is centrosymmetric or a complex quantity if it is 
noncentrosymmetric. This program, called ORTRA N, 
is available from the authors on request. 

V. Taking predictably aberrant relationships 
into account in phase determination 

As mentioned in § I, most direct-method procedures 
are based on the assumption that all triplet relation- 
ships among strong reflections (reflections having large 
values of 1#1) are normal. In order to select the result 
most likely to be correct in the multisolution ap- 
proaches (Long, 1965; Main, Woolfson & Germain, 
1971) or in the symbolic-addition method (Karle & 
Karle, 1966), self-consistency indexes based on this 
assumption are calculated, although Karle (1970b) has 
argued persuasively against the 'highest self-consisten- 
cy' approach in deciding which of several possible 
sets of phases is likely to be the correct one. He notes 
that, in space group PT, the most self-consistent solu- 
tion has all signs positive but is unlikely to be correct 
for a crystal structure with equal atoms in general 
positions. In fact, the fraction of relationships of a 
given magnitude I# ( -h )# (k )# (h -k ) l  which are aber- 
rant is predictable (Fisher, Hancock & Hauptman, 
1970a). Proceeding on the assumption that all rela- 
tionships are normal succeeds in solving many struc- 
tures because the aberrant relationships are distributed 
among most or all of the strong reflections, so that 
any one reflection is involved in many normal relation- 
ships and only a few aberrant ones. In cases of struc- 
tural regularity of the type described in this paper, 
however, a relatively small fraction of the strong 
reflections (those falling in the secondary columns of the 
benzene transform, for example) are involved in all of 
the pred'.ctably aberrant relationships so that in ap- 
plication of equation (1) these aberrant relationships 
may easily outweigh normal ones at some stage of the 
phase determination. Once an incorrect phase is as- 
signed to one reflection, its normal relationships with 
other reflections will give false phases, leading quickly 
to disaster. 

It is, however, in just these cases that we can predict 
which relationships are aberrant on the basis of the 
values of T(hi) which have been associated with each 
strong reflection. As each triplet relationship 
( - b , k , h - k )  among the strong reflections is found, 
the quantity P =  T(-h)T(k)T(h-k )  is computed and 
aberrant relationships are recognized as those for 
which P is negative (for a centrosymmetric fragment) 
or has a phase angle near z~ (in the case of a noncentro- 
symmetric fragment). For structures dominated by a 
repeating structural unit, the aberrant relationships are 
included with an assumed phase of ~z and the self- 
consistency index is computed accordingly. Notice that 
for space group P ]  the 'all-plus' solution is no longer 
necessarily the most nearly self-consistent and that 
the probability of the most nearly self-consistent set 
being the correct one is increased. 

For cases in which the transform of a fragment 
can be found in the I#l-weighted reciprocal lattice but 
is not particularly dominant, it may be preferable 
simply to omit the relationships suspected of being 
aberrant from the phase determination, or at least 
from its early stages. 

VI. An application in space group P]  

As an example of the application of these methods we 
will describe the solution of the crystal structure of 
methoxydalrubone, C20H20Os, a plant pigment (Dreyer 
& Thiessen, 1974). Its rather regular benzenoid mole- 
cular structure, (I) was not known until revealed by the 
crystal structure analysis. 

CH3~ 0 

CH 3 
0 

CH 3 

The space group is PT (Z=2),  so that all benzene 
rings are parallel. The intensity data for 3641 reflections 
with sin 0/2 < 0.642 were reduced to normalized struc- 
ture factor magnitudes using program ORESTES* 
(Thiessen & Levy, 1973). The cumulative distribution 
of reflections with IEI2> z for methoxydalrubone falls 
between curves 1 and 2 of Fig. 3 in Rogers & Wilson's 
(1953) paper, indicating considerable hypersymmetry. 
Note that in the triclinic system the normalized struc- 
ture factor E is identical to the quasi-normalized struc- 
ture factor #. 

The printer plot of Fig. 6 is a representation of the 
location in reciprocal space of the 430 Bragg reflections 
(and their Friedel mates) from methoxydalrubone 
with I#l >-- 1.5. The pattern of the benzene transform is 
clearly visible (compare Fig. 6 with Fig 1) with many 
reflections in the primary columns [T(h) positive] but 
with a considerable number in the secondary columns 
[T(h) negative]. 

Standard methods for solution of the phase problem, 
such as Long's (1965) program for reiterative ap- 
plication of Sayre's equation, failed uniformly in the 
case of methoxydalrubone, even with starting sets 
chosen by the convergence mapping method of Ger- 
main, Main & Woolfson (1971). E maps resulting from 
these attempts displayed largely planar arrays of peaks 
on a hexagonal lattice, i.e. fused benzene rings with 
additional atoms at their centers, an arrangement 

* This program estimates overall absolute scale and thermal 
parameters (which may be anisotropic if desired) by a least- 
squares technique, calculates and sorts a set of IEl's, and com- 
putes relevant statistics of the set. It is available from the 
authors on request. 
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which cannot correspond to chemical reality. The 
structure was actually solved by expanding the starting 
set of reflections to include a planar hexagonal array 
of strong reflections which was recognized in the data 
set and given signs corresponding to those of the 
benzene transform. In an ex post facto computer ex- 
periment, Long's program was modified as described 
in the preceding section to treat as aberrant all relation- 
ships among three strong reflections each of which 
had a calculated value of T(h)< - 2 . 2  for the benzene 
transform [T(000)= 6.0]. The correct solution then had 
the highest self-consistency index of the 16 sign sets 
produced. 

The totals at the bottom of Table 1 classify the 
5568 triplet relationships among the 430 strong re- 
flections (IEI_> 1.5) of methoxydalrubone. The true 
phase of the product E(-h )E(k )E(h -k )  is based on 
the final crystal structure, and the predicted phase is 
obtained from the sign of P = T ( - h ) T ( k ) T ( h - k )  if 
I T(h)l>2"2 for each individual transform and is un- 
predicted otherwise. Of the 177 relationships predicted 
to be aberrant, only three are normal. 

Table 1. Classification of  the 5568 triplet relationships 
of  methoxydalrubone 

The totals listed at the bottom divide the relationships into 
categories according to the actual sum of phases and that 
predicted from the benzene transform. The remainder of the 
table subdivides these totals according to the value of 

M(D-KS) for each relationship. 

Predicted 0 Not predicted Predicted n 
Actual sum Actual sum Actual sum 
of phases of phases of phases 

M(D - KS) 0 n 0 n 0 n 
3.5 

2 1 1 
3.0 

18 1 3 
2"5 

98 15 1 8 
2"0 

541 68 3 28 
1"5 

1861 2 234 5 60 
I'0 

1071 9 388 13 61 
0"5 

222 45 405 27 13 
0"0 

19 72 158 55 3 
-0"5 

2 10 13 32 
- 1"0 

Totals 3834 138 1283 136 3 174 

In general, it may be more effective and just as 
convenient to predict a relationship as aberrant if the 
product P is less than some negative limit rather than 
placing a limit on each individual T(h). This point is 
still under investigation. 

VH. Comparison with other methods 

It seemed desirable to test whether the method of 
identifying aberrant relationships based on the recogni- 
tion of structural regularity is equivalent to or dif- 
ferent from the predictions based on statistical methods. 
We therefore calculated the quantity M ( D - K S )  in 
the way described by Fisher, Hancock & Hauptman 
(1970b) for the 5568 relationships among the strong 
reflections for methoxydalrubone. 

The results are shown in the main body of Table 1 
in which we have classified the relationships according 
to the actual phases of the products, the phases predic- 
ted from the benzene transform, and also according to 
the values of M ( D - K S ) .  Large values of this quantity 
are expected to be associated with normal relationships 
and indeed they are for those which we predict to be 
positive. However, the situation seems to be reversed 
for those relationships which we predict to be aberrant; 
most of these are also associated with substantial 
positive values of M ( D - K S ) .  Indeed, the only three 
relationships predicted to be aberrant which are in 
fact normal are also the only three in this group 
having negative values of M ( D - K S ) .  We conclude 
that our prediction of aberrant relationships based on 
structural regularity is complementary to the predic- 
tions based on statistical methods, and that the two 
methods employed together may be more powerful 
than either one alone. 

For benzenoid systems at least, predictable aber- 
rancy based on the transform seems to be related to 
the correction term for 'chance interactions' proposed 
by Hauptman (1964). The correction term C(hl ,-h3) 
will be important for just those triples in which each of 
the vectors ends in a secondary column. Of course, if 
the orientation of the benzene rings can be determined 
as we have described here, replacing the correction 
term by its value averaged over all orientations, as 
Hauptman proposes, becomes unnecessary. 

VHI. Applicability to crystals of higher symmetry 

The conclusions of the present paper are applicable 
when repeated structural units are parallel. This situa- 
tion occurs most commonly in space group P1 with 
one molecule in the unit cell or in space group PT 
with one or two molecules per unit cell, but can also 
occur for certain molecular orientations in space groups 
of higher symmetry. When repeating moieties occur in 
more than one orientation, two questions arise: (1) 
are our methods for predicting aberrant relationships 
still effective, and (2) do these structures have as 
large a fraction of predictably aberrant relationships 
as those we have considered above? We have made 
some preliminary calculations for both real and hy- 
pothetical structures in an attempt to answer these 
questions. 

There seems to be little doubt that program 
ORTRAN, given the point-group symmetry of the 
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crystal, will seek out the superimposed transforms of 
a given fragment with similar effectiveness for one, 
two, or four equivalent positions not related by in- 
version centers. We believe (see Appendix) that the 
quantity which predicts whether a triple is normal or 
aberrant in the monoclinic case is 

~ =  P+ P'= T(-h)T(k)TOa-k) 
+ T(-h')T(k')T(h'-k') (11) 

where, if an unprimed vector represents a set of indices 
hkl, the corresponding primed vector is the symmetry- 
related reflection (hf:l for the monodinic system, b 
axis unique). Relationships with I ~] larger than some 
suitably chosen limit are predicted to have the phase of 
~ .  It may be desirable to omit from the sum terms 
with one or more IT(h)] below a specified limit. The 
corresponding quantity for orthorhombic symmetry 
would have four terms, etc. 

Our tentative answer to the second question is that 
nonparallel arrays of benzenoid systems seem to pro- 
duce a considerably smaller fraction of predictably 
aberrant triples. We take this to indicate that such 
structures will cause less difficulty in structure solution 
by standard methods. 

We wish to express our appreciation to H.A. Levy 
for many helpful discussions. 

APPENDIX 

Equation (11) can be used to predict the phase of a 
relationship for a structure in which the unit cell 
contains several fragments with known orientations 
but in unknown positions. Some of these fragments 
may be single atoms. We will present here a qualitative 
derivation of this equation; we hope to develop a 
quantitative treatment for future publication. 

Let 
n 

~(k)= ~ Z~(k) (12) 
t=1 

where 
Z,(k) = N-I/2T~(k) exp (2nik. t~). (13) 

Here n is the number of fragments in a unit cell, 
T~(k) is the known value of the complex transform for 
one fragment in its correct orientation, and t~ is the 
unknown translation vector for that fragment. N is 
the number of atoms in the unit cell, and for this 
derivation we will assume them all to be of the same 
kind. 

Both the magnitude and phase of each T~(k) are 
known, but only the magnitude of each Zi(k) is 
available. The magnitude [g(k)[ is also known, and it is 
clear from (12) that 

Ig(k)l _< ~ IZ,(k)l. (14) 
i=1 

Let us assume temporarily that we are interested only 
in reflections which are so strong that the equal sign 
in equation (14) holds. For these reflections 

~(k)--- ~{Z,(k)} (15) 

for every fragment i. That is, each contribution to d~(k) 
in equation (12) has the same phase and that phase is 
the phase of g(k). 

Now let us consider a triple of three such strong 
reflections: 

~ ( -  h)J~(k)~(h- k) 

= { ~ Zi(-h)} { ~ Z,(k)} { ~ Z i (h -k )}  
i = l  i = l  i = l  

= ~ ~ ~Zi(-h)Zj(k)Zm(h-k) .  
i=1 j=l m=l 

(16) 

It follows from (15) that 

~(-  h) + ~aO~) + ~a(h- k) = rp{ Zi(-h)Zj(k)Z,,,(h-k) } , (17) 

so that each of the n 3 terms in equation (16) has the 
same phase, namely the phase of the relationship. 

Each of these terms is given by 

Z~(- h)Zj(k)Zm(h- k) = N -  a/2 T~(- h) Tj(k) Tin(h- k) 

xexp { 2 n i [ - h .  t , + k .  t j + ( h - k ) ,  tm]} (18) 

and in general we cannot calculate its phase directly 
because the vectors t~ are unknown. There are, however, 
n terms for which i=j= rn and for these 

Z , ( -  h)Z,(k)Z,(h - k) = N -  3/2 T~(- h) T,(k) Ti (h-  k) 

(19) 

because the exponent is zero. Then for these very 
strong reflections the phase of the relationship is given 
by 

~o(- h) + ~o(k) + q~O~- k)= ~o{ T,(-  h) T~(k) T~O~- k) } (20) 

where each of the n values of i should yield the same 
phase. 

We will now show that in practical problems, for 
which the magnitudes of @(-h),  ¢(k), and ¢ ( h - k )  do 
not have their maximum allowable values, better results 
can be obtained by rewriting equation (20) as 

where 
~0(- h) + ~0(k) + ~00~- k)-- ~0{~0,, k)} (21) 

~(h,k)= ~ r,(-h)r,(k)r,O~-k). (22) 
i=1 

This is essentially equation (11) of the text. 

If [g(k)[ is large but less than ~ ]Zi~)[ then the 
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complex quantities Z,(k) need not have exactly the 
phase of #(k). Let the phase differences be 

A ~0,(k) = ~0(Z,(k) } - ~0(k). (23) 

These differences require us to modify the simple dis- 
cussion presented above. Incorporating them in equa- 
tion (20) we obtain 

~ ( -  h) + ~o(k) + (p(h- k) = ~o( T , ( -  h) T,(k) r , ( h  - k)) 
- A ~ 0 , ( - h ) -  Aq~i(k)-A~0,(h-k), (24) 

an equation which does not yield the phase of the re- 
lationship because the phase differences are unknown. 
The effects of these differences tend to be reduced in 
equation (21), however, for two reasons. First, the 
values of d~o~(k) tend to be smaller for larger IZ~(k)[ 
and therefore the larger terms which dominate equation 
(22) will tend to have the smaller errors. 

Second, every positive deviation Aq~i(k) must be 
accompanied by a negative deviation A~0j(k) in some 
other term of equation (12). These deviations will af- 
feet different terms of equation (22) in opposite ways 
and tend to cancel each other. 

Using equation (21) and following the procedure of 
Karle & Karle (1966), we can readily derive a revised 
tangent formula: 

tan ~0(h) 

_ (w(h,k) sin [~0(k)+~0(h-k)-~0{9~(h,k)}])k (25) 
(w(h,k) cos [¢(k)+~0(h-k)-~0{~@(h,k))])k " 

Here w(h,k) is an appropriate weighting factor that 
reflects the precision with which ~0{~(h,k)} represents 
the phase of each relationship. We hope to present 
a more complete discussion of this quantity in a future 
publication. 
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